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I .  Phys.: Condens. Matter 3 (1991) 91S97.0. Printed in the UK 

On the polaron mass at finite temperatures 
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Abstract. The concept of polaron mass at T#O is shown to be poorly defined. Various 
forms of temperature dependence m&) suggested in the literature do not coincide, their 
difference being due to the different ways of defining the mass at T#O. A definition of 
effective massas the ratioofthe impulse Fdrand themean polaronvelocity (u),issuggested 
and the elementary derivation of the temperature dependence of the m a s  spectrum in such 
a way in the region kT 4 AwPh is given. The results obtained for the dependence m&T) via 
polaron cyclotron resonance frequency are discussed and the width of the cyclotron line is 
shown to be of the same order as or larger than the temperature shift of its maximum, the 
latter being not given by any of the expressions for m.,,(T) discussed earlier. We give an 
expression for the shape of the resonance line and compare it with the available data, 

1. Introduction 

The Frohlich polaron, i.e. the electron interacting with long-wave optical phonons in 
the polar crystal, is known as one of the most simple and most beautiful problems of 
solid state physics where the methods of quantum field theory proved to be very efficient 
and the quantitative comparison of the theoretical predictions with experiment is poss- 
ible [l,  21. One of the main characteristics of a polaron is its effective mass mefr(T). 
There are different ways to calculate this value. At zero temperature all methods give 
identical answers coinciding with experiment. At finite temperatures the situation is 
much less clear. Different ways to define m&) at T # 0 have been used: via the mean 
energy of the state with momentum p [3], as the pole of the temperature-dependent 
Green function [4,5], via the interaction-induced contribution in the free energy of the 
system [6] and via the Feynman path integral [7-91. The temperature dependences of 
all these different 'masses' are by no means the same although at the limit T = 0 all these 
definitionscoincide. Note, however, that in thelow-temperature region themost popular 
(at present) definitions in [6] and in [7-91 coincide even at Tf 0. 

The question arises of whether the temperature dependence of the polaron mass can 
be measured experimentally and compared with conflicting theoretical predictions so 
that one could decide which of these different definitions of me&) should be preferred 
to others. 

Unfortunately, as we shall see, the answer to this question is negative and neither of 
these different definitions is connected directly to physically measurable quantities (the 
definition used in [6-91 is, however, connected indirectly with the mobility of polarons 
and, if handled with care, should perhaps be preferred to others). 
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This work consists of two simple considerations. First, we give an elementary 
interpretation of the temperature dependence of the effective mass defined in [6-91 at 
T <  mphr where wph is the frequency of optical phonons (here and in the following 
we use the convention h = c = k = 1). Second, we show that in cyclotron resonance 
experiments quite a different 'mass' is measured and, further, the width of the cyclotron 
line at T #  0 is always of the same order as or much greater than the temperature shift 
of its maximum. Thus at T # 0 the concept of mass is not universal and it is better not to 
introduce it at all. 

2. 'Inertial' polaron mass 

TheFrohlich Hamiltoniandescribing the interactionoftheelectron with the polarcrystal 
lattice has the form [I] 

x ( U : )  exp( -ik. x) - a, exp(ik. x) (1) 

where a: and uk are the phonon creation and annihilation operators and m* is the 
effective electron masswithout taking intoaccount itsinteraction with long-wave modes. 
The interaction with the lattice leads to renormalization of the polaron dispersion law. 
In the first order of the coupling constant which we assume to be small it has the form 
U221 

E ( p )  = p2/2m* - rumph (-/e) s i n ' i ( p / w ) .  (2) 
At p > T, E ( p )  acquires an imaginary part which corresponds to instability 

of the fast-moving polarons with respect to phonon emission. However, in the low- 
temperature region T <  uph the fraction of such fast polarons as well as the density of 
real optical phonons in the crystal are exponentially small. Thus at T d uph the presence 
of the latter may be safely neglected and we have simply the Boltzmann distribution of 
charged particles: 

f(P) = exp[ - E(p)/TI (3) 
where E ( p )  is the renormalized dispersion law (2). 

Let us define the temperature-dependent polaron 'inertial' mass as 

mefi(T) = Fdt/b)T (4) 

where ( o ) ~  is the mean polaron velocity acquired under the action of the infinitesimal 
impulse F dt. (a)r can be expressed in the following way: 

Substituting E(p) here in the form (2), expanding the numerator over F dt and the 
whole expression over the small coupling constant 01, we get 
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(lo and 1, are the modified Bessel functions). This expression coincides with equation 
(3.8) of [9], is in accordance with the results of [&8] but differs from effective 
temperature-dependent polaron masses defined in [>SI. The low-temperature expan- 
sion of equation (6) has the form 

i.e. the effective mass increases with increasing temperature. This has a clear physical 
interpretation: the dispersion law (2) is non-parabolic and the effective mass of the 
polaron with momentump, given by 

increases with increasing p and the mass averaged over the distribution (3) increases 
with increasing T(see [6]). 

m,B(T) = m*[l+((u/6)(1+9T/4wph + 2 2 5 F / 3 2 ~ & + .  . .)] (7) 

 mea(^) =p/ (aE/ap)  (8) 

3. Cyclotron resonance on polarons 

The effective mass defined according to equation (4) is related to the problem of polaron 
mobility at T #  0 [7-lo]. However, the polaron mobility depends crucially also on the 
complicated processes of polaron scattering by phonons and impurities and the direct 
measurement of the value (4) is not possible. The best way to measure polaron mass is 
by the cyclotron resonance experiment. 

At T = 0 the polaron momentum is equal to zero and the cyclotron frequency is 
w, = eH/m,(O). At T # 0 the non-parabolic dispersion law (20) results in different 
cyclotron frequencies of polarons with different momenta (the momentum distribution 
being given by equation (3)) and the cyclotron resonance line acquires a width, its 
maximum being shifted at lower frequencies. Such a widening of the cyclotron line is 
well known in relativistic plasmas [ll]. In the polaron problem the widening of the 
cyclotron line due to non-parabolicity of the spectrum was noted in [12] but no quan- 
titative estimate has been made. Let us find the shape of cyclotron Line at T < wph. The 
effects due to scattering by phonons and impurities will be neglected. 

At small T the typical polaron momenta are small and the way in which the small 
deviations from parabolicity in the dispersion law (2) 

are taken into account is sufficient. We restrict ourselves to the case of a weak magnetic 
field (wc 4 T emph)  where the classical treatment is adequate. In this case the effective 
Hamiltonian of a polaron in the external ma netic field is dictated by gauge invariance 

Hamiltonian equations of motion, we may easily find the Larmor frequency of the 
polaron in an external magnetic field as the function of polaron momentump: 

E(p) = constant + (pz/2m*)(l - q 6 )  -31up4/160m*zw,h -O(p6)  (9) 

considerations: X ( p )  =E(*) where 9 = +-- lp- eAl . Writing down and solving the 

w(p)  = 2eH aE/apz = (eH/m*)( l  - a/6 - 3ep2/40m*wph + . . .). (10) 
The power absorption in the frequency interval dw is 

f(w) dw exp[ -E(p)/TI IpL I 4p Q P* exp(-p2/2m*) ( d ~ * / d ~ )  d o  
and hence 

where w. = (eH/m*)( l  - m/6) is the cyclotron frequency at T = 0. The finite- 
temperature cyclotron line (11) has a maximum at 

f ( w )  Q (w ,  - w )  exp[20(w - wC)wph/3aw,T] e(w,  - w )  

w = w,# - 3nT/20wph + c f f F / w t h  t.. .). 

(11) 

(12) 
The decrease in the resonance maximum frequency at non-zero Tcan be interpreted 
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Figure 1. The shape of the cyclotmn resonance Lines at different lcmperaturcs as measured 
in 1131. The power absorption in arbitrary units is plotted along the vertical axis. 

as the growth of the effective ‘cyclotron mass’. Note, however, that such a ‘cyclotron 
mass’ does not coincide with the ‘inertial mass’ (4.7) discussed earlier. This difference 
seems quite natural as the width of ‘mass distribution’ (11) is comparable with the shift 
of its maximum. 

Turning to the question of comparison of our results (11) and (12) with experiment 
we meet immediately two important difficulties. First of alI in real experimental situa- 
tions the cyclotron resonance width is usually provided not by non-parabolicity of the 
polaron spectrum but rather by the processes of polaron scattering by acoustic phonons 
and impurities (if T b  wph, the density of optical phonons is exponentially small). The 
second and most troublesome difficulty is that, besides the ‘long-wave’ non-parabolicity 
considered. the spectrum also involves the intrinsic ‘short-wave’ non-parabolicity due 
to the terms proportional top4, etc. which enter directly the Frohlich Hamiltonian (1). 
Theeffectsdue to intrinsicnon-parabolicity have exactly thesame form and temperature 
dependence as the effects due to optical phonon interaction and we do not see any way 
to distinguish between them. 

The cyclotron resonance of polaronsat low temperatures was studied experimentally 
in [13]. The study has been performed for the polarons in the ionic crystal AgBr with 
the coupling constant (Y = 1.6 in the temperature region from 5 to 22 K which is much 
less than wph = B O K  (the parameters of the Frohlich Hamiltonian for AgBr can be 
found for example in [l]). The coupling constant a = 1.6 may be considered as ‘small‘ 
as the higher-order effects become essential at (Y = 5-6 (see, e.g., 1141). 

The shape of the cyclotron resonance line measured in [13] is presented in figure 1. 
Weseeimmediately that at T Z  17 Kthelineisratherbroadanditsshapeissymmetrical 
and described adequately by the Lorentzian 

(13) 
where z is the relaxation time due to polaron scattering processes. The physical mech- 
anism of thisscattering is, of course, an interesting but separate question (perhaps, the 
trap model discussed in [13] i s  adequate). At lower temperatures T <  15 K the line is 
much narrower, sharply asymmetrical and rather well approximated by the dependence 

following from equation (11). The step function dependence proportional to Aw @(Am) 

f ( w )  e= 1/[1 + (w - O , ) ~ Z * ]  

f ( w )  a Awexp[-Aw/C(T)] O(Aw) 
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is somewhat smeared out, of course, but at low temperatures the smearing out is rather 
weak. We may conclude that in the low-temperature region the scattering effects are 
not very important. This conforms to theoretical expectations: at low temperatures the 
density of acoustic phonons falls off as P and the resonance trap scattering discussed in 
[13] falls off exponentially proportionally to exp(-E& (Eb is the trap bound-state 
energy). 

Unfortunately, the linewidth obtained from experimental data is several times larger 
than that obtained from our result (11). This means that the effects due to intrinsic 
non-parabolicity of the band are more important than those due to optical phonon 
interactions. One can see further that the linewidth is not proportional to T as follows 
from our simple classical theory based on the non-parabolicity of the spectrum and the 
experimental temperature dependence of the width is weaker. 

Note that at the lowest temperature at which the measurements in 1131 were done 
(Tmin = 4.9 K) we are not, strictly speaking, in the classical region. The resonance 
frequency of [I31 was about U, = 5.5 GHz which corresponds to T, = 3 K. It is not very 
much smaller than T,, and quantum corrections to our classical theory may be essential. 
However, quantum effects result on the contrary in the temperature dependence of the 
resonance Line width being sharper than the classical theory predicts; at T Q T, the width 
is exponentially small. 

As for the shift of the resonance line maximum position, it is not seen at all at 
T Q 10 K. The results for the shift plotted in figure 1 of [ 131 are consistent both with zero 
and with the weak temperature dependence of equation (12). Looking at the curves for 
the resonance lineshape at different temperatures 'with a magnifying glass', one may 
still guess that the maximum is shifted. 

However, there are no experimental errors in the figure for the resonance line shapes 
quoted in [13] and it is not quite clear whether it is appropriate to analyse these curves 
quantitatively in too much detail. Further measurements of the resonance lieshapes in 
the low-temperature region on clean samples are required in order to check the pre- 
dictionofequation (11) for thelineshape (with some additional numerical factor account- 
ing for the intrinsic non-parabolicity effects present in the exponent). 

In conclusion we repeat our main message: the polaron mass at T # 0 is a poorly 
definedconcept and is not especially physical. At any rate, to compare the experimental 
shift of the cyclotron line maximum with the temperature dependence of the 'inertial 
mass' (7) as was done in [SI is rather pointless. 

The difficulties of defining mass at non-zero temperature are rather universal and 
notspecialatall topolarons;see, e.g.,ourwork [15] whereasimilarproblemisdiscussed 
for solitons in relativistic field theory at non-zero temperatures. 
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